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We show that for any function <p: N -> IR + one can find a Cantor set C and a
trigonometric polynomial T of order d( T) such that the generalized Bernstein
inequality II T'1Ie:( (p(d(T)) II TIl c does not hold. Furthermore, if <p(n):( Mn" (for
some M and p> 11, the set C can be chosen to be regular with respect to the
Green's function of iC',C with pole at Cfj. Analogous results are established for
algebraic polynomials and Markov's inequality. {1992 Academic Press. Inc.

1. INTRODUCTION

It is well known that Markov's inequality plays an important role in the
constructive theory of functions. Recently it has appeared that it is also
closely related to the existence of a continuous linear operator extending
Coo functions from compact subsets of IR N (see [3, 5]). Some new families
of sets in IR N on which Markov's inequality holds have been found in [2]
(case of L OO-norm) and in [1] (case of LP-norm). In [6], a Cantor type
subset of IR was constructed on which Markov's inequality fails to hold. In
the one-dimensional case, Markov's inequality is closely related to
Bernstein's inequality for trigonometric polynomials. This raises a similar
question about counter-examples to the latter inequality. In this paper, we
construct such counter-examples in a more general setting.

For more references on Markov's inequality see [7] (in the one-dimen­
sional case) and the bibliography of [2] (in the case of several variables).
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For any real function f defined on AclR we put lifll,,=Sup"oA Iflx)!,
Let A c [ - n, n], Be [ -1, 1], and qJ: N -+ iR1 + be given,

DEFINITION. We say that the Bernstein inequaity holds on A with coe/
flciem qJ if for any trigonometric polynomial T of order at most n, we have

II Till A::;; qJ(n) II TIIA'

and. analogously. that the _Markov inequality holds on B with eoeffieien! <,?

if for any algebraic polynomial P of degree at most n we have

The aim of this paper is to prove the following

THEOREM. For any function qJ: N -+ IR +, there exists a Cantor set C c

[ - n/2, n!2] (C c [ - 1, 1], resp.) such that the Bernstein inequalit"
LMarkov's inequality, resp.) does not hold on C with coefficient qJ. Furrher·,
more, if qJ(n)::;; lvln P (for some M and p> 1), the set C can be chosen to be
regular with respect to Green's function of C C with pole at rx,.

The paper is organized as follows: in Section 2, given an integer k and
a function qJ: N --+ iR1 +. a sequence u = (u ll ) depending on qJ and k and a
Cantor set C(k, qJ) are constructed; Section 3 gives a sufficient condition in
order that C(k, qJ) be regular; in Section 4, we prove the theorem using
CUe, qJ) as a counter-example to the Bernstein inequality and (by a change
of variable) to Markov's inequality.

2. CONSTRUCTING THE SEQUENCE (Un)

AKD THE FAMILY C(k, qJ) OF CANTOR SETS

Let k be an integer satisfying k ~ Sand k == 1 (mod 4). Given a function
q;: N -+ iR1 +, a sequence U = (un) of positive integers is constructed induc­
tively in the following way:

(i) 110= 1,

(ii) un +! is chosen so that

un divides Un + I and U"+l == 1 (mod 4) (2.1 )

MaxfSu nm(kn+'u ·)'k"+l}l Ii' ~ n I

(2,2)
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We put Co= [-n/2, n/2]. In order to construct the Cantor set C(k, 1.fJ)
we define by induction a sequence of compact subsets Cn of Co by

The set Cn (n > 0) consists of (k + l)n closed, pairwise disjoint intervals
In" of length n/(knun) whose mutual distance is at least 3n/(5knun_ d.
(We always assume that Max In,r< Min In,r+ I for all nand rE

{l, ..., (k+ l)n_l}.)
This fact is easily proved by induction, remarking that since k == 1

(mod 4) and Un == 1 (mod 4), denoting by [a, b] any interval In,n we have

cos(kn+ lUna) = cos(kn+ 'unb) = 0,

Then cos(kn+lun8) vanishes at 8 = a + i(b - a)/k (i = 0, ... , k) in [a, b] and
takes the value 1 exactly (k + 1)/2 times. In other words, [a, b] consists of
exactly k half-period~ of 8-+cos(kn+lun8) and this function vanishes at a
and b and is positive on the first, the third, the fifth, ..., the last half-period.
Then Cn+ I (1 [a, b] consists of (k + 1) intervals of length n/(kn+ IUn+ I)'

The distance between any two intervals is n/(kn+lun)-2n/(kn+lun+d.
Let us note that

(2.3 )

since Un + I ~ 5un·
We put C = C(k, 1.fJ) = n:~o Cn' The set C(k, 1.fJ) is a symmetric Cantor

set containing n/2.

3. CONCERNING THE REGULARITY OF C(k, 1.fJ)

In this section we show that if the function I.fJ does not increase too fast
then the set C(k, 1.fJ) can be chosen to be regular. For such a result to hold,
some restrictions on I.fJ are necessary, since we have the following

Remark. Suppose that C is a compact subset of 1= [ -1, 1] with a
positive logarithmic capacity cap(C). Let Gc denote Green's function of
iC\C with pole at 00. Then A := SuP1exp(Gd is finite and by both the
classical Markov inequality and the Bernstein-Walsh inequality, for each
polynomial P of degree at most n, we have
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Thus,

IIP'ilc::::;cp(n) ,IPIIE

for any function cp satisfying cpU)?,; t2A'.

We prove however the following
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PROPOSITION. Suppose that cp(t)::::; Mt P with M> 0 and p > 1. Then one
can choose k so that C(k, cp) is regular with respect to Green's .fimction (~r

C'C with pole at Xi.

Proof We adapt a reasoning of Tsuji [8, Theorem m.63]. Fix no E r,J
and r E {1, ..., (k + 1)"0} and put 10 = I,o,r' Then

x x ik+l)'l

Cnlo= n Cnnlo= n n lnJ'
n = no + 1 n= 1 r= 1

where we put In.r= Ino+fl,r n la, if InO+ll,rclo'
We note that the length of la, 1101= rr/(knouno ) and

(3.1 )

for n = 1, 2, ... and 1::::; r::::; (k + 1)n and by (2.3)

if 1 ::::; r < s::::; (k + 1)".
We put

ik+ lJ"

En= U In.r
r=l

and take N points X7· r (i = 1, ..., N) on each lnr such that

q';')
( TI Ix;"r - x;z-r I) - "d(ln,r) for N -> 'x, (3.3)
\l~i<j::::;l\r

dll"r) denoting the transfinite diameter of In.r (see, e.g., [8, p. 71J). Since
there are (k + 1)" N points x;,·r on En' we have by the definition of the
transfinite diameter

, (N1k;cl)n)
[aN(k+lln(En )] -

(k+ I)"

?'; TI
r.5 = 1

Nn Ix;"r -Xi,sl =: P,
i.J~ I

(3.4 )

where we assume that r::::; sand i < j if r = s.
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Then P consists of (n + 1) factors, P = P il P 11 _ I ... Po, where P 11 is formed
with pairs of points which lie in the same JIlJ and PIl - I is formed with
pairs of points which lie in the same JIl-I,r and belong to JIl,s and JIl,s'
(5 < 5'), respectively, and P,,_ 2 is formed with pairs of points which lie in
the same JIl - 2,r and belong to JIl-I,s and JIl - V (5<5 ' ), respectively, and
finally Po is formed of pairs of points which lie in Jo and beiong to J I sand
J v (5 < 5'), respectively.

By (3.3),

as N --+ Xi. (3.5)

Since the transfinite diameter of any interval 1 is 1/1/4, we have by (3.1)
d(J",r) = n:!(4k"O+ " UIlO +11) so that

if N>k+1. (3.6 )

By (32) if X",s X",s. E J for some rand 5 < 5' then IX"'s - X",s'l >-
., l' } n -l,r '1 J:::;--"

3n/(5k"o+"ullo+I_I) and the number of such pairs is (k+ 1)"-1 (k!l) N 2 so
that

P >- (3n/(5k"o+"u ))N2(k+ 1)"k/2
n-1:;"-, flo+n-l .

Similarly, if IX;"s - XJ's' I is a factor of P,,_ 2 then

IX",s-X",s'I>-d O >-3n/(5k"o+,,-lu )
I ) /"' n-1::;/" no+n-2

(3.7)

and the number of factors of P,,_ 2 is (k + 1)"- 2 (k! I)[(k + 1)N]2, so that

and finally,

P >- (3n/(5k"o+I-IU ))N2(k+ l)n+lk!2
n-2/""'" no+n-2 , (3.8 )

(3.9)

By the assumption of the proposition, it follows from the definition of u"
that, for each n EN,

Therefore, one easily checks that

:< A P'kmllo pi p'
U nO + 1 """= uno'

where A = MJl(p-l) and m = 2p 2/(p -1 )2.

(3.10 )
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Hence by {3.61, if N>k+ 1, we get

P >-[2k"o+Il(4km"Ou jpnJ-kiV'ik+lln2
11 ~ .. no-

and by (3.7), (3.8), (3.9), and (3.101

P"=P P ... p >-[kI!0+"(4kn1/l.1u jpn-il-kV'lk+ll"l
, n-l n-:! 0::::;.--- L ~n,) J

x [k"u+,,-l(Akm"Ouno)pn-'J -k.\"lk+ 11'''' 1 X ...

x [k'lt! + l(AkfnnOuno )poJ -k:V
2
!k + 1,2,,-1 2,

Now if we take k + 1> 2p, by an easy calculation we get

Consequently, since
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(3.11 )

{3.12 ;

(
N(k + 1J") ~ (k + 1 )cn N 1

2 I 2

from (3.4) we get for k + 1> 2p,

if !v· -> x.

d(E"l= Lim dNlk+1J,,(E,,)?: Lim (p"p')lS-'lk+l i-'n
1\ ......... 'X .\' ......... x.,

Since d(E,,) -? d( C n Jo1 if n -? 00, it follows that

d(CnJ)' >-lI[k"o+l(Akm ",)u )2] >-B"0IJ 12
o :::::--- l 'no':::;'--- CI ~ (3.\3 )

where B is a positive constant depending only on k and p.
Fix now a point a E C = C(k, qJ). Then there exists a sequence I" := 1".",

(11=1,2, ... ), where rn E{1, ... ,(k+l)"). such that aEIn for ali n. Put
8" = II,,!. Then C n I" is contained in K" := en [Iz - al ,,:; 8,,}. By (3.13) we
get

Ln(1!8,,). Ln(1i8,J
Lim sup I ?: L1m sup i ",,-x Ln[l(d(K"l] ,,~x Ln[l,d(Cnl,,1J

>- L' Ln(£,J
""" 1m 1/2.

,,_ x n Ln B -+- 2 Ln 8"

Thus, by Wiener's criterion (see [8, p. 104, Corollary 2 to Theorem m.62]),
a is a regular point of C.
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4. COUNTER-EXAMPLES PROVING THE THEOREM

(1) Bernstein Inequality

Let T= Tkn+l Un be the trigonometric polynomial of order kn+1un defined
by T(8) =cos(kn+ lu,,8). We have

and

therefore

IIT'IIC\k.<p) >- kn+lun
cp(kn+ lUn) II Til C(k.<p) r cp(kn+ lunKrrunjun+ 1)

~njn (see (2.2)).

kn+lun+l

ncp(kn+ lUn) .

The last estimate shows that the Bernstein inequality on C(k, cp) with
coefficient cp is not satisfied for the polynomials Tkn+I Un '

If cp(n) ~ Mn P with p> 1, we choose k + 1> P and then by the proposi­
tion of Section 3, C(k, cp) is regular.

(2) Markov Inequality

The Cantor set C(k, cp) is symmetric with respect to 0 and does not
contain O. Then if C(k, cp) is regular, so is the set C(k, cp) n R +. The change
of variable x = cos 8 maps [0, rr] onto [ -1,1].

Let D(k, cp) = cos( C(k, cp) n IR +). The set D(k, cp) is a Cantor type set
containing O. By [4, Theorem 3.5], if C(k, cp) is regular, so is the set
D(k, cp).

Let P(x) = Pk"+luJX) = TkHluJArccos(x») be the Chebyshev polynomial
of degree k n + lUll' We have

since IP'(O)I = IT'(nj2)1 =kn+lun, IIP'IIC(k.<p)~kn+lull and by the previous
argument,

Then the Markov inequality on D(k, cp) with coefficient cp is not satisfied
for the polynomials Pkn+lUn '
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