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We show that for any function ¢: N -»R™ one can find a Cantor set C and a
trigonometric polynomial T of order d(T) such that the generalized Bernstein
inequality | 7'l < @(d(T) | T|l+ does not hold. Furthermore, if ¢(n)<Mn’ (for
some M and p>1), the set C can be chosen to be regular with respect to the
Green’s function of C'.C with pole at oo. Analogous results are established for
algebraic polynomials and Markov’s inequality. T 1992 Academic Press. Inc.

1. INTRODUCTION

It is well known that Markov’s inequality plays an important role in the
constructive theory of functions. Recently it has appeared that it is also
closely related to the existence of a continuous linear operator extending
C* functions from compact subsets of RY (see [3, 5]). Some new families
of sets in R on which Markov’s inequality holds have been found in [2]
{case of L*®-norm) and in [1] (case of L”-norm). In [6], a Cantor type
subset of R was constructed on which Markov’s inequality fails to hold. In
the one-dimensional case, Markov’s inequality is closely related to
Bernstein’s inequality for trigonometric polynomials. This raises a similar
question about counter-examples to the latter inequality. In this paper, we
construct such counter-examples in a more general setting.

For more references on Markov’s inequality see [7] (in the one-dimen-
sional case) and the bibliography of [2] (in the case of several variables).
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COUNTER-EXAMPLES TO INEQUALITIES

For any real function f defined on 4 <R we put | ]l =Sup.. 4 [ fix)i
et Ac[—n,n], Be[—1,17, and o: N — R* be given.

DeriNITION.  We say that the Bernstein inequaity holds on A with coef-
Jicient o if for any trigonometric polynomial 7 of order at most #, we have

1Tl s < @) 1T 4,

and. analogously, that the Markov inequality kolds on B with coefficien: ¢
if for any algebraic polynomial P of degree at most n we have

[Pl e < o(n) | Pls.

The aim of this paper is to prove the following

THEOREM. For any function ¢: N — R™, there exists a Cantor ser <
[—n/2,7n/2) (Cc{—1,1], resp.) such that the Bernsiein inequaiity
{Markov's inequality, resp.) does not hold on C with coefficient ¢. Further-
more, if @ln)< Mn? (for some M and p > 1), the set C can be chosen 1o be
regular with respect to Green's function of C* C with pole at .

The paper is organized as follows: in Section 2, given an integer k and
a function ¢: N —R™*, a sequence = (u,) depending on ¢ and k and 2
Cantor set C(k, @) are constructed; Section 3 gives a sufficient condition in
order that Cik, ¢) be regular; in Section 4, we prove the theorem using
Clk, ¢} as a counter-example to the Bernstein inequality and (by a change
of variable} to Markov’s inequality.

2. CONSTRUCTING THE SEQUENCE {#,,}
AND THE FAMILY C(k, ¢) OF CANTOR SETS

Let k be an integer satisfying ¥ > 5 and £ =1 {mod 4). Given a function
¢: N -+ R™*, a sequence u=(u,} of positive integers is constructed induc-
tively in the following way:

(1) ll() = 1’

{it} u,,,is chosen so that

u, divides u,, , , and t,, =1 (mod 4} (21
Max{5u,, nop(k™* 'u,}/k" '}

<u

14

Loy o
Up1 = Max 5”717 n- (p(’?i-F n)j (ley
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We put Cy=[—n/2, n/2]. In order to construct the Cantor set C(k, @)
we define by induction a sequence of compact subsets C,, of C, by

C,.,={0eC,|0<cos(k”" " u,0)<sin(nu,/u, )}

The set C, (n>0) consists of (k+ 1)” closed, pairwise disjoint intervals
I, of length n/(k"u,) whose mutual distance is at least 37/(5k"u,_;).
(We always assume that Max/,,<Minl,,,, for all » and re
{1, ., (k+1)"=1}.)

This fact is easily proved by induction, remarking that since k=1
{mod 4) and u, =1 (mod 4), denoting by [, ] any interval I, ,, we have

cos(k"* 'u,a)=cos(k"* 'u,b)=0,

sin(k" " 'u,a)= —1, sin(k"*'u,b)=1.

Then cos(k™* 'u,0) vanishes at 6 =a+ i(b—a)/k (i=0, .., k) in [a, b] and
takes the value 1 exactly (kK + 1)/2 times. In other words, [a, 5] consists of
exactly k half-periods of 8 — cos(k” " 'u,6) and this function vanishes at a
and b and is positive on the first, the third, the fifth, ..., the last half-period.
Then C,, ;n [a, b] consists of (k+ 1) intervals of length =/(k"*'u, , ).

The distance between any two intervals is n/(k"*'u,) — 2r/(k" " u, . 1).
Let us note that

/(K" ) — 2m/(k"* u,, ) 2 3/ (5K ) (2.3)

since u,, . ; = Su,,.
We put C=Clk, o)={\7_, C,. The set C(k, ¢} is a symmetric Cantor
set containing 7/2.

3. CONCERNING THE REGULARITY OF C(k, @)

In this section we show that if the function ¢ does not increase too fast
then the set C(k, ¢) can be chosen to be regular. For such a result to hold,
some restrictions on ¢ are necessary, since we have the following

Remark. Suppose that C is a compact subset of I=[—1, 1] with a
positive logarithmic capacity cap(C). Let G denote Green’s function of
C\C with pole at oo. Then A4 :=Sup,exp(G) is finite and by both the
classical Markov inequality and the Bernstein-Walsh inequality, for each
polynomial P of degree at most n, we have

1Pl e< Pl <n? P, <n’A" | P
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Thus,
[P'llc<on)|Ple
for any function ¢ satisfying ¢(t) > >4".
We prove however the following
PROPOSITION.  Suppose that ¢(1)< Mt? with M >0 and p> 1. Then one

can choose k so that C(k, @) is regular with respect to Green's function of
C: C with pole at .

Proof. We adapt a reasoning of Tsuji [8, Theorem II1.637]. Fix n,e N

and re {1, .., (k+1)"} and put Jo=1, ,. Then
=« o h+1
Cﬁ JO = m Cn N JO = (f\; l'q jr.u (]
n=ny+1 n=1 r=1
where we put J,, =1, ., "Jo, il I, ,, . =Jo.

We note that the length of Jy, |Jy| = n/(A™u,,} and

]Jn,rt = Lng+n - n//(km+"un;)+n) (3}“}
forn=1,2,..and 1<r<(k+1)" and by {2.3)
d?z = diSt(']n,r’ Jn,:) = dno +n 2 3?[/{ Sk"O‘?‘ﬂuno + -1 )s {32:‘
fl1<r<s<(k+1)
We put
th+1)
En = U Jn.r
r=1

and take N points X7 (i=1, .., N) on each J,, such that

2

i‘ H IX:I’_X;I"I) N d(Jrz,r) for N— x, (3 l

Mgi<jg<N

diJ, ) denoting the transfinite diameter of J,,, (see, e.g., {8, p. 71]). Since
there are (k+1)" N points X" on E,, we have by the definition of the
transfinite diameter

[dyiss 1 En) T

N
= Max {( 11 lyi— 3 ); Vi ¥E En}
/

I<i<isNk+1Y

Nk + 1)""
2

(k+1) N
> 11 Tl i —xpi=2,

rs=1 ij=1

where we assume that r<sand i<jifr=s.

P
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o
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Then P consists of (r + 1) factors, P=P,P,_,--- Py, where P, is formed
with pairs of points which lie in the same J,, and P,_, is formed with
pairs of points which lie in the same J, and belong to J, and J,

n—1L1,r
{s<s'), respectively, and P,_, is formed with pairs of points which lie in
the same J,_,, and belong to J,,_; , and J,_ , (s <s'), respectively, and
finally P, is formed of pairs of points which lie in J, and belong to J, ; and
Jiy (5<s"), respectively.
By (3.3),
N
2

P,,l( ) N d(Jn,l)"'d(Jn,{kH)”) as N— . (3'5)

Since the transfinite diameter of any interval 7 is |1|/4, we have by (3.1)
dJ, ) =n/(4k"™*"u,,  ,) so that

P, > (m/(4k™ )V EHITRZ i NS k4L (3.6)
By (32), if X}, X}“eJ,_;, for some r and s<s', then |X}°—X7*|>
37/(5k™* "u,, . ,_,) and the number of such pairs is (k+1)"~* (*3') N? so

that
Py = (30/(SK™ gy )V, (3.7)
Similarly, if | X7 — X7 is a factor of P, , then
| X7 = X7 2dy) 2 3n/(5k™ "y, 5)
and the number of factors of P, ,is (k+1)" "2 (*TH[(k+ 1)N]? so that
P, 5= (3r/(Sk™ "ty o, _y)) Nk k2 (3.8)
and finally,
Po> (3n/(5kno+luno))Nl(k-rl)z"*‘k/Z. (39)

By the assumption of the proposition, it follows from the definition of u,
that, for each ne N,

Uy S Mu2P" T Dy? < ME?Pmu? .
Therefore, one easily checks that
! I
Upy s S ATK™P YL (3.10)

where 4A=MY?~" and m =2p*/(p—1)~



W
[ ]
Ll

COUNTER-EXAMPLES TO INEQUALITIES

Hence by (3.6), if N>k + 1, we get

Lo
e
e

Pn 2 [2kll() + n(flkmno

—kN(k ¥ ,
o) ] o {

and by (3.7), (3.8}, (3.9), and (3.10)

. 2 [ r noie ENTA 1) 2
Pli=P, P, s Py [k™* Ak, )] ’
x [k”u-'—”il(/lkmnoll” )p,P:} — KN+ Lt %

HY + 1 Py — Ntk + 1=t
x [k Ak, )P "1 .

Now if we take k+ 1> 2p. by an easy calculation we get

Lod
I
[

P> [kno + 1+ l,k(Akmnoumj}l] — Nk~ 1" ;" 03,
Consequently, since

<N(k + 1)”) (k+1)"N"
2 2 )

/

from (3.4) we get for k+ 1> 2p,
d(En): le d!\!’l/\'+1)"(En)> le (Pn-s)/)l\}?%k*ir:”
N—=x Nox
> [2k/10+n(Akmnou”0)p”] —k (k+ 14 {k””*Z(Ak’””Oum)z]*‘.
Since d(£,) — d(C nJy) if n— oo, it follows that

d(Cﬂjo)> 1/[/{"“Z(Ak'”"“‘u,m)z] 2‘8”0 |‘}GE2* { ‘ i

Lod
()
—

where B is a positive constant depending only on £ and p.
Fix now a point ae C= C(k, ¢). Then there exists a sequence {, =1,
(n=1,2,..), where r,e{l,.., (k+ 1)"', such that ael, for all #. P
21

g,=!1,]. Then Cn1,is Contamed inK,:=Cn{|z—al <e,}. By {(3.13) we
get
_ Ln(l/z,) _ Ln(le, |
L _ B oy i sup )
P Tarydk,)1” P Tl d(C A )]
L
> Lim LR

n-onlnB+21neg,

Thus, by Wiener’s criterion (see [ 8, p. 104, Corollary 2 to Theorem 111621},
a is a regular point of C.
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4. COUNTER-EXAMPLES PROVING THE THEOREM

(1) Bernstein Inequality

Let T'= T+, be the trigonometric polynomial of order k" " 'u, defined
by T(0) = cos(k"*u,0). We have

1T ey < I Tl ¢

n

o SSI(RU, /Uy ) ST [Uy 4
and

1T Nl ey = | T/ (m/2)| = k" * 'ty
therefore

H T’HC(k,(p) kn+1un _ k"+1u,,+1
k" ) 1Ty @K™ )y 4 1) mop(k" tu,) -
=n/n (see (22)).

The last estimate shows that the Bernstein inequality on C(k, ¢) with
coefficient ¢ is not satisfied for the polynomials Tn+1,, .

If p(n) < Mn? with p> 1, we choose K+ 1> p and then by the proposi-
tion of Section 3, C(k, ¢) is regular.

(2) Markov Inequality

The Cantor set C(k, ¢) is symmetric with respect to 0 and does not
contain 0. Then if C(k, ¢) is regular, so is the set C(k, ¢} n R*. The change
of variable x =cos 6§ maps [0, =] onto [—1, 1].

Let D(k, o) =cos(C(k, p)nR*). The set D(k, ¢) is a Cantor type set
containing 0. By [4, Theorem 3.5], if C(k, ¢) is regular, so is the set
Dk, o). ‘

Let P(x)= P+, (X)= Tjury, (Arccos(x)) be the Chebyshev polynomial
of degree k" 'u,. We have

”PHD(Ic,qp): ||THC(k,¢)<7Wn/”n+1

since [P'(0)| =|T"(n/2)l =k™* "u,, |P'l ¢k, o) = k" 'u, and by the previous
argument,

1P|l pik, o) k',
" = n
ok +1“n) ”P“D(k,qz) no(k +1“n)

=n/n.

Then the Markov inequality on D(k, @) with coefficient ¢ is not satisfied
for the polynomials Pj.-1, .
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